Taking aim at autoimmunity with CAAR T cells

Aimee Payne, MD, PhD
University of Pennsylvania
August 6, 2021

Disclosures

• Co-founder with equity, consulting, grant funding, Cabaletta Bio
• Inventor on patents licensed by Novartis, Cabaletta Bio
• Off label use of treatments for pemphigus will be discussed
Autoimmunity in the United States

<table>
<thead>
<tr>
<th>Autoimmune disease</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence</td>
<td>24 million</td>
</tr>
<tr>
<td>Annual direct healthcare costs</td>
<td>$100 billion+</td>
</tr>
<tr>
<td>NIH research funding (2020)</td>
<td>$1 billion</td>
</tr>
</tbody>
</table>

“In general, two approaches to treatment are currently available. The first involves replacing or repairing impaired function...The second treatment approach centers on suppressing the destructive immune response.”

Progress in Autoimmune Diseases Research, NIH ADCC report, 2005
We declared war on cancer

Are we waging an effective war on autoimmunity?
Pemphigus vulgaris (PV): A paradigm for human autoantibody-mediated disease

- Anti-desmoglein (DSG) 3 antibodies are 98-100% sensitive and specific for disease diagnosis

 Ishii JI 1997; Schmidt Exp Derm 2010

- Anti-DSG3 antibodies are necessary and sufficient for blister formation, even as monovalent antibody fragments

 Amagai JCI 1992; Amagai JCI 1994; Yeh Clin Immunol 2006; Payne JCI 2005
Pemphigus treatment paradigm, circa 2000:
Global immune suppression with corticosteroids and adjunctive immunosuppressants

- **Corticosteroids**
 - Relatively rapid disease control with prednisone and slow taper
 - Increases expression of DSG3 and other adhesion molecules by inhibiting STAT3

- **Off-label treatment with adjunctive immunosuppressants** for steroid-sparing effect
 - mycophenolate, azathioprine, methotrexate

- **IVIG** infusions as an alternative or adjunctive therapy for disease control

- Severe hospitalized cases often treated with **plasmapheresis and cyclophosphamide**

➤ **Managing risk of disease versus risk of therapy:** GI bleed, avascular necrosis, agranulocytosis, Pneumocystis pneumonia, sepsis, secondary cancers, blood clots, aseptic meningitis

Nguyen JBC 2004, Mao JCI Insight 2017
Wide variation exists in diagnostic techniques and treatment of PV, even among the world’s experts... There is clearly a need for consensus standard with regard to patient stratification and randomized controlled trials.
Consensus definitions and disease activity instruments

Paving the way for clinical trials

Complete remission on minimal therapy: blister-free on prednisone ≤10 mg daily and/or half-maximal dose of adjunctive immunosuppressants

Complete remission off therapy: blister-free for at least 2 months off systemic and topical therapy
Randomized clinical trials in pemphigus
The start of the evidence-based era

- Azathioprine, mycophenolate and cyclophosphamide are effective steroid-sparing agents in pemphigus
 Beissert Arch. Dermatol. 2006; Chams-Davatchi JAAD 2007
- Infliximab and etanercept did not demonstrate significant therapeutic effect in placebo-controlled RCTs
 Hall, BJD 2015; Fiorentino JAMA Derm 2010

Journal of Investigative Dermatology
Volume 130, Issue 8, August 2010, Pages 2041-2048

Original Article
Treating Pemphigus Vulgaris with Prednisone and Mycophenolate Mofetil: A Multicenter, Randomized, Placebo-Controlled Trial
Stefan Beissert 1, Daniel Mimouni 2, 3, Amrinder J. Kanwar 4, Neil Solomons 2, Veena Kalia 2, Grant J. Anhalt 5

Prednisone 1-2 mg/kg/day until disease control

placebo MMF 2 g/day MMF 3 g/day

Proportion in CR on prednisone ≤10 mg daily at 48-52 weeks

MMF failed to reach the primary endpoint
- Faster and more durable CRs with MMF
- Lower total prednisone dose with MMF
Moving toward more effective pemphigus therapies

Anti-CD20 B cell depletion with rituximab

Early RTX therapy = better clinical response
Lunardon, JAMA Dermatol 2012

- Retrospective cohort (n=34)
• FDA-approval of rituximab in June 2018 for PV
 - Increased efficacy and safety of first-line RTX plus short-term prednisone vs high-dose prednisone alone
 - Anti-DSG3 titers drop to negative range with repeated rituximab infusions

• Up to 90% of responders relapse without maintenance therapy

• 2nd line RTX + maintenance is superior to MMF
 - 40.3% vs 9.5% remission at 52 weeks

• Chronic B cell depletion with rituximab:
 - 4-9% annual rate of serious infections
 - Up to 1.9% lifetime risk of fatal infection

Prospective randomized clinical trials of rituximab
Maintenance RTX and prednisone versus high-dose prednisone or MMF

Joly Lancet 2017; Colliou STM 2013; Tony Arthr Res Ther 2011; Werth et al, NEJM 2021
Mechanisms of relapsed and refractory disease after RTX

Incomplete B cell depletion by rituximab

Hammers, JID 2015; Ellebrecht, JCI Insight 2017; Colliou, Science Transl Med 2013
What can the war on cancer teach us?

Precision Oncology

Immunotherapy

President Richard Nixon signing the National Cancer Act of 1971. Credit: National Cancer Institute

CANCER MOONSHOT

INITIATIVES 2017–2020

OVER 70
CONSORTIUMS OR PROGRAMS

OVER 240
RESEARCH PROJECTS
Chimeric antigen receptor (CAR) T cells:
Precision cures of B cell cancers

58 - 81% complete remission
40 - 57% long-term remission

Maude et al, NEJM 2018
Locke et al, Lancet Oncol 2018
Wang et al, NEJM 2020
Pathogenic B cells in PV are uniquely defined by a surface anti-DSG3 B cell receptor.

Replacing the anti-CD19 domain with the DSG3 autoantigen directs antigen-specific rather than total B cell depletion.

Targeted B cell depletion with CAAR T cells could lead to durable remission of PV without global immune suppression.

From CARs to CAARs
Adapting precision cures of B cell cancers for B cell-mediated autoimmune diseases
Antigen-specific B cell depletion with DSG3-CAART

Histologic and serologic remission of experimental PV without detectable off-target cytotoxicity

- Elimination of anti-DSG3 B cells and mucosal blistering
- Dose-dependent drop in anti-DSG3 antibody titers and increased DSG3-CAART engraftment
- No off-target toxicity identified in assays using human skin xenografts, primary human cells, and high-throughput membrane proteome arrays

Ellebrecht et al, Science 2016 and Lee et al, JCI 2020
Moving CAART technology forward to clinical trials

Basic research
- Discovery
- Proof of concept

Investigational New Drug application
- Chemistry, Manufacturing, and Controls
- Pharmacology and Toxicology
- Clinical Trial Protocol

Clinical research
- First-in-human clinical trial

- GMP manufacturing
- Clinical operations
- Regulatory teams
- Financial support

- IND cleared by FDA in September of 2019
- FDA Orphan Drug Designation
- FDA Fast Track Designation
Considerations on clinical application
CARTs for cancer versus CAART for pemphigus

- Mechanisms of anti-CD19 CART resistance
 - Shedding of CD19
 - Unlikely - BCR negative cells may be functionally anergic
 - Mutation of CD19
 - If BCR no longer binds DSG3 it will be irrelevant to disease

- Cytokine release syndrome (CRS)
 - Unlikely from target cell burden (anti-DSG3 B cells are <1% of total B cells)
 - May occur from serum anti-DSG3 antibody if it activates DSG3-CAART (start with low fractionated dose)

- Lymphodepletion may not be required in non-oncologic indications
 - Reduces regulatory T cells that suppress CART function – but in autoimmunity Tregs are typically dysfunctional
 - CD4 CAR T cell trials for HIV indicate 11+ year engraftment after infusion of 1-2e9 CART cells without lymphodepletion
 - Higher CAART dose (+/- in vivo expansion from soluble anti-DSG3 antibody) may be sufficient for engraftment

The DesCAARTes™ Phase 1 Trial (NCT04422912)
Open label study of DSG3-CAART in mucosal PV patients

Major Inclusion Criteria
- Age ≥ 18, confirmed diagnosis
- Inadequately managed by std immunosuppressive therapies
- Active disease
- Anti-DSG3 antibody positive
- Recent rituximab
- Prednisone > 0.25mg/kg/day
- Other autoimmune disorder requiring immunosuppressive therapies
- Recent investigational treatment
- ALC < 1,000 at screening

Major Exclusion Criteria
- Recent rituximab
- Prednisone > 0.25mg/kg/day
- Other autoimmune disorder requiring immunosuppressive therapies
- Recent investigational treatment
- ALC < 1,000 at screening

Part	Cohorts	# Subjects
A – Dose Escalation
Fractionated infusions at increasing dose levels | 4 | 3 (+3) per cohort
B – Dose Consolidation
Consolidating selected dose fractions into a single infusion | 2 | 3 (+3) per cohort
C – Expansion
Expanded subject enrollment at final selected dose | 1 | Approx 12

Currently enrolling at 3 sites:
- Penn (Porter/Micheletti/Werth)
- UC-Davis (Abedi/Maverakis)
- Stanford (Marinkovich/Weng)
The DesCAARTes™ Phase 1 Trial (NCT04422912)
Open label study of DSG3-CAART in mucosal PV patients

<table>
<thead>
<tr>
<th>Screening</th>
<th>Apheresis</th>
<th>DSG3-CAART INFUSION</th>
<th>Acute safety data</th>
<th>Primary safety endpoint</th>
<th>Evidence of target engagement</th>
<th>Efficacy</th>
<th>Long-term follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week -10 to -8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major Inclusion Criteria
- Age ≥ 18, confirmed diagnosis
- Inadequately managed by std immunosuppressive therapies
- Active disease
- Anti-DSG3 antibody positive

Major Exclusion Criteria
- Recent rituximab
- Prednisone > 0.25mg/kg/day
- Other autoimmune disorder requiring immunosuppressive therapies
- Recent investigational treatment
- ALC < 1,000 at screening

Primary Study Endpoint

Adverse Events
Dose Limiting Toxicities include:
- Grade 3+ cytokine release syndrome or neurotoxicity
- Grade 2 cytokine release syndrome or neurotoxicity that fails to improve to Grade 1 or baseline within 7 days

Other measures
- Manufacturing success rate
- CAART expansion / persistence
- Maximum tolerated dose and optimal fractionation regimen

- No DLTs or clinically relevant toxicities observed in the first 28 days following infusion for all 3 patients in the first cohort
 - DSG3-CAART cells were detected at low levels by qPCR in all 3 patients

- Declining anti-DSG3 titers
 Assuming selective B cell ablation in 2-4 wks and IgG half-life of 3-4 wks, anti-DSG3 antibody titers should fall within 6 months

- Key efficacy measures
 - Anti-DSG3 antibody titer
 - Disease activity (clinical)
 - Steroid / immunosuppressive use
 - Rate of / time to / duration of remission

Adjunctive immunosuppressants are stopped; prednisone tapered to low dose prior to infusion
Precision medicine for pemphigus

- Collaboration between cancer and autoimmune disease researchers has enabled the discovery and advancement of CAART technology from the laboratory to the clinic
- DSG3-CAART represents the first precision cellular immunotherapy to enter clinical trials for an autoimmune disease indication
- DSG3-CAART aims to durably eliminate antigen-specific B cells while sparing normal B cells, potentially leading to safe and lasting remission of mucosal PV with a one-time treatment
- Once proven successful in mucosal PV, precision therapies for other antibody-mediated diseases could follow, including mucocutaneous (DSG3+DSG1) PV, MuSK myasthenia gravis, PLA2R membranous nephropathy, and hemophilia A with Factor VIII inhibitors
Acknowledgments

Payne Lab
Christoph Ellebrecht
Jinmin Lee
Daniel Lundgren
Xuming Mao
Silvio Manfredo-Vieira
Eun-Jun G Choi
Sangwook Oh
Baomei Wang
Elyssa Sherman
Insk Choe
Damian Maseda
Britt Levy
Casey Lee
Carolyn Kushner
Christina Bax
Napatra Tovanabutra

Penn Derm
Arben Nace
Steve Prouty
Chris Marshall
Tzvete Dentchev
John Seykora
George Cotsarelis
David Margolis
Daniel Shin
Joshua Bryer

Human Immunology Core
Nina Luning Prak
Ling Zhao
Rachel Ben Shimol

CHOP Vector Core
Han Van Der Loo
Olga Zelenaia

Cell and Vaccine Production Facility
Don Siegel
Andrew Fesnak
Andrea Brennan
Anlan Dai
Shane Mackey
Nora Hennessy

Cell Therapy and Transplantation
Enrico Radaelli
Charley Assenmacher
Natalie Hoeppe

Center for Cellular Immunotherapies
Carl June
Anne Chew
Amy Marshall
Julie Jadlowsky
Alina Boesteanu
Gabi Plesa
Bruce Levine
Theresa Colligon
Dana Hammill
Lester Lledo

Apheresis
Nicole Aqui
Leah Irwin

Office of Clinical Research
Emma Meagher
Inna Strakovsky
Barry Brock
Kathryn Steinbugler

Quality Assurance
Phil Cross

Investigators
David Porter
Rob Micheletti
Emanual Maverakis
Mehrdad Abedi
Peter Marinkovich
Wen-Kai Weng
Victoria Werth
Elizabeth Hexner
Noelle Frey

Translational Correlative Studies Laboratory
Simon Lacey
Irina Kulikovskaya
Farzana Nazimuddin
Vanessa Gonzalez
Lifeng Tian
Fang Chen

Milone Lab
Selene Nunez-Cruz

Joe Fraietta
Erik Williams

Penn Derm
Arben Nace
Steve Prouty
Chris Marshall
Tzvete Dentchev
John Seykora
George Cotsarelis
David Margolis
Daniel Shin
Joshua Bryer

Cell and Vaccine Production Facility
Don Siegel
Andrew Fesnak
Andrea Brennan
Anlan Dai
Shane Mackey
Nora Hennessy

Penn Derm
Arben Nace
Steve Prouty
Chris Marshall
Tzvete Dentchev
John Seykora
George Cotsarelis
David Margolis
Daniel Shin
Joshua Bryer

Human Immunology Core
Nina Luning Prak
Ling Zhao
Rachel Ben Shimol

CHOP Vector Core
Han Van Der Loo
Olga Zelenaia

Cell and Vaccine Production Facility
Don Siegel
Andrew Fesnak
Andrea Brennan
Anlan Dai
Shane Mackey
Nora Hennessy

Cell Therapy and Transplantation
Enrico Radaelli
Charley Assenmacher
Natalie Hoeppe

Center for Cellular Immunotherapies
Carl June
Anne Chew
Amy Marshall
Julie Jadlowsky
Alina Boesteanu
Gabi Plesa
Bruce Levine
Theresa Colligon
Dana Hammill
Lester Lledo

Apheresis
Nicole Aqui
Leah Irwin

Office of Clinical Research
Emma Meagher
Inna Strakovsky
Barry Brock
Kathryn Steinbugler

Quality Assurance
Phil Cross

Investigators
David Porter
Rob Micheletti
Emanual Maverakis
Mehrdad Abedi
Peter Marinkovich
Wen-Kai Weng
Victoria Werth
Elizabeth Hexner
Noelle Frey

Translational Correlative Studies Laboratory
Simon Lacey
Irina Kulikovskaya
Farzana Nazimuddin
Vanessa Gonzalez
Lifeng Tian
Fang Chen

Cabaletta Bio
Steven Nichtberger
Gwen Binder
David Chang
Arun Das
Anup Marda
Uri Herzberg
Chien-Chung Chen

Penn
Mark Engleka
Denene Wambach